

DOI 10.35694/YARCX.2020.50.2.008

ПРОДУКТИВНЫЕ КАЧЕСТВА КОРОВ АЙРШИРСКОЙ ПОРОДЫ РАЗНОЙ ПОВЕДЕНЧЕСКОЙ АКТИВНОСТИ

О.В. Филинская (фото) к.с.-х.н., доцент, доцент кафедры зоотехнии Д.Г. Керунова магистрант кафедры зоотехнии ФГБОУ ВО Ярославская ГСХА, г. Ярославль

В последние годы генетический отбор и улучшение управления стадом были более успешными, в результате увеличились надои молока молочных коров [1; 2]. Наращивание уровня продуктивности коров требует использования новых подходов в селекционно-племенной работе с крупным рогатым скотом [3]. Молочную продуктивность коров можно повысить одновременным совершенствованием породы и созданием соответствующего типа животных, которые в данных хозяйственных условиях будут отличаться хорошим аппетитом и активным поведением. Продуктивность животных формируется при наличии соответствующих условий среды и хороших приспособительных качеств.

Поведение сельскохозяйственных животных является механизмом реализации генетически детерминированных возможностей организма в конкретных условиях [4]. Исследовательские работы по этологии доказали, что значение поведенческих реакций животных и умение формировать их в нужном направлении являются важными факторами при производстве животноводческой продукции [1; 5]. При первом осмотре животных обслуживающий персонал обращает внимание, прежде всего, на их активность, поведение, которое всегда служило одним из главных методов диагностики состояния организма [6]. Изучение поведенческих особенностей молочных коров даёт возможность найти пути повышения их продуктивных качеств в определённых условиях кормления и содержания в хозяйстве.

Комплектование стад крупного рогатого скота должно осуществляться за счёт животных с определённой нормой поведения и далее закрепляется в последующих поколениях [7].

Молочная продуктивность, айрширская порода крупного рогатого

скота, поведение

Lactation performance, Ayrshire breed of cattle, behaviour

Методика

В программе по сохранению и совершенствованию генофонда пород крупного рогатого скота следует выделить айрширскую

породу, обладающую хорошими качественными характеристиками молока (содержанием жира и белка).

Целью наших исследований являлась оценка молочной продуктивности коров с учётом этологических особенностей. Исследования проводили в ЗАО «Агрофирма «Пахма» Ярославского района Ярославской области на коровах-первотёлках айрширской породы.

Наблюдения проводили за 16 коровами, подобранными с соблюдением принципа аналогов, находящимися на раздое. Этологические особенности изучали с использованием хронометража элементарных актов поведения в течение 2-х смежных суток по 6 часов по методике В.И. Великжанина [4], учитывая основные пищевые и двигательные реакции, затраты времени на отдых. Животные были разделены на группы с пониженной и повышенной активностью с распределением на классы активности: инфрапассивные, пассивные, активные, ультраактивные. Также были рассчитаны: индекс пищевой активности (ИПА) – время, затраченное на поедание корма и жвачку, делённое на общее время наблюдений; индекс двигательной активности (ИДА) – время, затраченное на стояние, движение, поедание корма и жвачку; а также индекс общей активности (ИОА), включающий время на все активные элементы.

При оценке молочной продуктивности учитывались такие показатели, как: надой за 305 дней лактации (кг), МДЖ (%), количество молочного жира (кг), МДБ (%), количество молочного белка (кг), коэффициент молочности, суммарное количество молочного жира и белка (кг), построены лактационные кривые коров разных групп.

Результаты исследований

В ходе наблюдений за коровами-первотёлками айрширской породы было установлено, что они были активными, большая часть учтённого времени уходила на стояние – 33,6%, лежание – 17,0% и поедание кормов – 30,8%. Чаще подходили к кормушкам и дольше потребляли корм (на 36,6%) животные с повышенной активностью. При этом продолжительность жвачки у них в 1,5 раза дольше, чем у сверстниц с пониженной активностью. Первотёлки предпочитали жевать преимущественно в положении стоя. Длительность жвачки положительно влияет на переваримость и усвояемость потреблённого животными корма.

К.А. Кассида и М.Р. Скокс отмечают, что уменьшение времени жевания может привести к тому,

что у коров повышается риск развития ацидоза в рубце из-за снижения уровня бикарбоната в результате снижения выработки слюны [8]. Другие авторы указывают, что первотёлки тратили меньше времени на потребление корма и жевание, чем полновозрастные коровы. Период отдыха жвачным животным необходим для пережёвывания потреблённого корма. У взрослых коров уровень слюноотделения был выше в покое [9]. Больше времени для кормления и жвачки можно получить только за счёт сокращения количества времени, затрачиваемого на другие типы поведения. Так, высокопродуктивные коровы затрачивают больше времени для потребления корма и меньше – для отдыха лёжа, чем низкопродуктивные коровы [1].

В наших исследованиях с увеличением класса активности коровы меньше времени в положении лежа уделяют пассивному отдыху и бездействию, а больше времени отводят активному состоянию.

Поведение коровы может быть использовано для лучшего управления молочным скотом и повышения общей продуктивности [10].

Молочная продуктивность коров в зависимости от индексов представлена в таблице 1. Повышение индексов пищевой, двигательной и общей активности сопровождается возрастанием показателей их продуктивности.

Животные, которые больше времени отводили поеданию корма и его пережёвыванию, с повышенной пищевой активностью, имели на 848,8 кг (или на 14,9%) молока за лактацию больше, чем с пониженной активностью. Достоверно выше у них было и количество молочного жира и молочного белка, разница по этим показателям составила, соответственно, 33,1 кг (или 13,7%, Р ≥ 0,95) и 31,3 кг (или 16,4%, Р ≥ 0,95). Коэффициент молочности зависит от надоя и живой массы животных, который на 158,3 кг (или на 13,6%) был больше у коров с повышенным ИПА, по сравнению с первотёлками с пониженной пищевой активностью. Можно отметить, что с увеличением надоя массовая доля жира в молоке коров с повышенной активностью ниже на 0,07 абс.%, чем у сверстниц из другой группы. При этом наблюдается увеличение белковомолочности на 0,04 абс.%, что может быть связано с лучшим потреблением корма и его усвоением.

При распределении коров на группы по индексу двигательной активности было установлено, что у более активных коров-первотёлок айрширской породы разность по надою

Таблица 1 – Молочная продуктивность коров в зависимости от индексов активности

нДекс	Уровень	ے	Значение индекса	ие :a	Надой за 305 дней, кг	ней, кг	%'ЖДМ	%	Молочный жир, кг	ир, кг	МДБ, %	%	Молочный белок, кг	белок,	Коэффициент молочности, кг	:HT I, Kſ
-IN			X±Sx	Cv, %	X±Sx	Cv, %	X±Sx	Cv, %	X T X	Cv, %	X±Sx	Cv, %	X±Sx	Cv, %	X∓Sx	Cv, %
	пониженный	9	0,54±0,02	8'/	5944,2±410,6	16,9	4,22±0,13	9′2	249,2±12,3	12,2	12,2 3,22±0,04	3,8	9′11∓6′061	14,9	1161,0±76,9	16,2
ΑL	повышенный	10	0,68±0,01	2,8	6829,0±261,5	12,1	4,15±0,1	9′2	282,3±8,8	8′6	3,26±0,05	2,8	222,2±7,4	10,5	1319,3±47,8	11,5
JN	разность, ±		0,14		884,8		70'0 -		*1,88		0,04		31,3*		158,3	
	разность, %		25,9		14,9		_		13,7*		-		*16,4		13,6	
	пониженный	9	0,66±0,02	6'9	6147,2±349,4	13,9	4,22±0,13	9′2	258,5±11,6	11,0	11,0 3,28±0,08	6,1	201,3±10,2	12,4	1191,5±19,5	13,8
ΑĮ	повышенный	10	0,80±0,01	4,8	6912,3±248,0	11,4	4,09±0,09	7,2	281,5±8,9	10,0	3,23±0,04	4,5	222,8±7,4	10,5	1335,3±44,2	10,5
ľИ	разность, ±		0,14		765,1		-0,13		23,0		-0,05		21,5		143,8*	
	разность, %		21,2		12,4		1		6′8		1		10,7		12,1*	
'	пониженный	8	0,80±0,02	9'9	6502,5±197,4	9′8	4,08±0,09	6,4	565,2±6,9	7,4	3,23±0,04	3,7	209,7±5,3	7,1	1250,0±39,4	6'8
√OΝ	повышенный	8	0,96±0,01	4,8	7004,6±296,4	6′11	4,10±0,11	6'1	286,5±10,2	10,1	3,27±0,07	6,3	229,9±8,2	8,7	1355,6±52,2	10,9
l	разность, ±		0,16		502,1		0,02		21,3		0,04		20,2		105,6	

Примечание – сравнение повышенного уровня активности с пониженным *при Р ≥ 0,95. ИПА – индекс пищевой активности; ИДА – индекс двигательной активности; ИОА – индекс общей активности.

за лактацию составила 765,1 кг (или 12,4%) при снижении качественных показателей молока: содержания жира – на 0,13 абс.%, содержания белка – на 0,05 абс.%. Но коэффициент молочности у них был достоверно выше на 143,8 кг (или на 12,1%, P ≥ 0,95), чем у менее активных сверстниц. В результате более высокого надоя у коров с повышенным ИДА количество молочного жира и белка больше на 23,0 кг (или на 8,9%) и на 21,5 кг (или на 10,7%) соответственно.

При расчете ИОА в группах коров с большей и меньшей активностью оказалось одинаковое количество голов. Надой за 305 дней лактации у группы первотёлок с повышенным индексом общей активности составил 7004,6 кг, что на 502,1 кг больше, чем у сверстниц. Разность по массовой доле жира и белка – 0,02 абс.% и 0,04 абс.%, по коэффициенту молочности – 105,6 кг, по количеству молочного жира и белка – 21,3 кг и 20,2 кг также была в пользу более активных коров.

Особенно чёткая разность по продуктивности отмечается у животных разных функциональных классов по индексу пищевой активности.

При распределении коров по классам активности по элементарным актам поведения максимальное количество исследованных животных было отнесено к классу «активные» (43,9%) и в равном количестве (по 18,7%) – к остальным классам («инфрапассивные», «пассивние» и «ультраактивные»).

Данные таблицы 2 показывают, что коровыпервотёлки разных классов активности имели неодинаковую продуктивность.

Существует прямая связь между продуктивностью и активностью – чем выше класс активности, тем животные более продуктивные. Самыми высокомолочными были первотёлки ультраактивного класса, их надой за 305 дней лактации составил 7311,6 кг, у активного класса – 6732,3 кг. У менее активных животных значения

Таблица 2 – Молочная продуктивность коров разных классов активности

		Класс активно	сти животных	
Показатель	инфра- пассивные	пассивные	активные	ультраактивные
Надой за 305 дн. лактации, кг	5736,0±620,2	6579,1±217,5	6732,3±312,0	7311,6±316,4
Массовая доля жира, %	4,15±0,24	4,30±0,13	4,03±0,09	4,21±0,22
Количество молочного жира, кг	235,4±10,9	282,4±4,12	270,5±9,4*	306,4±10,4**
Массовая доля белка, %	3,24±0,10	3,25±0,07	3,23±0,06	3,30±0,12
Количество молочного белка, кг	184,8±15,5	213,5±4,3	216,9±8,9	240,7±4,0*
Суммарное количество молочного жира и белка, кг	420,2±26,1	495,8±8,2	487,5±18,1	547,1±14,1*

Примечание – сравнение с инфрапассивной группой: * при P ≥ 0,95; ** при P ≥ 0,99.

этого показателя были 5736 кг и 6579,1 кг молока у инфрапассивных и пассивных соответственно. Динамика изменения показателей надоя прямо пропорциональна повышению пищевой активности животных.

При увеличении молочной продуктивности у коров возрастает потребность в энергии, что стимулирует аппетит и влияет на время, необходимое для потребления корма [1]. Это подтверждается и данными наших исследований на первотёлках айрширской породы.

Основными признаками, характеризующими биологические и продуктивные качества крупного рогатого скота, являются содержание жира и белка в молоке. По массовой доле жира и белка

в молоке разность недостоверная, при этом в молоке пассивных животных наблюдается большее содержание этих компонентов — 4,30% и 3,25% соответственно. Ультраактивные животные также характеризуются достаточно высоким содержанием жира и белка в молоке.

В результате большего надоя за лактацию у первотёлок высокого класса активности количество молочного жира, молочного белка и их суммарное количество достоверно выше, соответственно, на 71 кг (или на 30,1%, при $P \ge 0,99$), 55,9 кг (или на 30,2%, при $P \ge 0,95$) и 126,9 кг (30,2%, при $P \ge 0,95$), чем у сверстниц инфрапассивного класса.

Известно, что молочная продуктивность за лактацию зависит от высшего суточного или месячного удоя, а также от степени сохранения его на протяжении лактации [11]. Чем более постоянна лактационная кривая, тем выше надой за лактацию.

В наших исследованиях наивысший среднесуточный удой (пик лактации) приходится на второй месяц лактации, у ультраактивных коров – на третий месяц, затем идёт снижение продуктивности (табл. 3, рис. 1).

В первые три месяца лактации от коров инфрапассивного класса было получено 33,1% от общего надоя за лактацию, от животных пассив-

ного класса – 31,1%, активного – 32,9%, ультраактивного – 32,0%.

Максимальная разница по надою по степени снижения между смежными месяцами у коров инфрапассивного класса была между третьим и четвёртым месяцами и составила 10,3%, у пассивных и активных животных – между восьмым и девятым месяцами (15,3% и 12,3%), у животных ультраактивного класса разница не превышала 7%.

Низкая, относительно плавно спадающая лактационная кривая надоя была у коров инфрапассивного класса, двухвершинная – у пассивных

Таблица 3 – Динамика молочной продуктивности первотёлок по месяцам лактации

Месяц лактации	Класс активности животных					
	инфрапассивные	пассивные	активные	ультраактивные		
1	516,7±87,2	483,3±37,9	627,3±69,7	678,0±28,5		
2	681,3±53,3	775,7±37,8	813,4±35,7	796,7±58,9		
3	698,0±77,0	788,7±67,6	775,0±48,6	866,7±82,3		
4	626,3±90,8	719,3±21,8	718,8±44,7	804,3±52,7		
5	623,7±107,1	724,3±32,0	689,3±33,8	764,7±10,9		
6	585,7±102,9	738,0±63,7	659,3±33,9	711,7±37,4		
7	527,3±42,3	674,7±59,7	677,6±31,7	694,7±31,3		
8	499,7±40,9	649,6±59,8	649,3±27,8	677,7±28,7		
9	487,0±43,7	550,3±19,5	568,7±37,0	665,6±14,8		
10	490,3±55,4	475,0±29,9	553,6±40,4	652,0±41,0		
В среднем за лактацию	5736,0±620,2	6579,1±217,5	6732,3±312,0	7311,6±316,4		

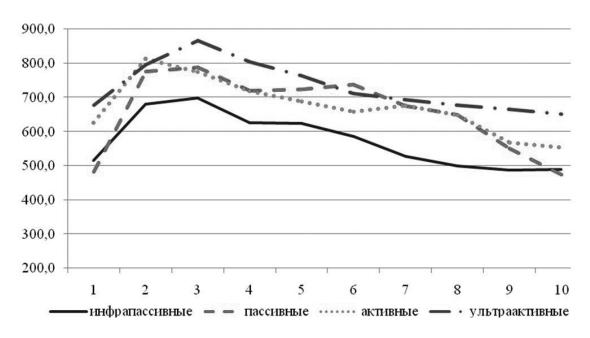


Рисунок 1 – Лактационные кривые коров-первотёлок разного класса активности

и активных животных. Ультраактивные сверстницы имели высокую одновершинную лактационную кривую, надои за месяц у них плавно спадали.

Именно то, что активные и ультраактивные животные затрачивают больше времени на потребление и пережёвывание корма, обеспечивает им в определённой степени более высокий уровень и устойчивый характер молочной про-

дуктивности. Эта особенность акта поедания корма стимулирует уровень обмена веществ в организме в целом.

При изучении вопроса были построены кривые содержания МДЖ (рис. 2).

Содержание жира в молоке коров планомерно повышается от начала лактации к её концу. Жирность молока у коров пассивной и активной

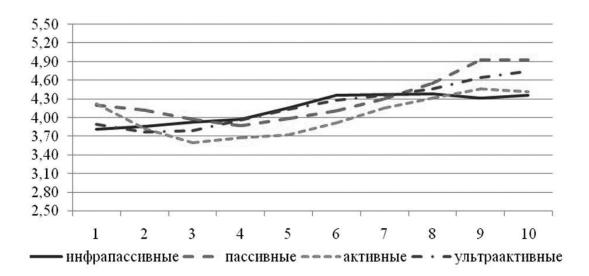


Рисунок 2 – Изменение содержания массовой доли жира в молоке по месяцам лактации коров разного класса активности

групп при раздое снижается, а с 3–4 месяца постепенно повышается. У животных крайних групп – активной и инфрапассивной – жирномолочность повышалась плавно. Характерной особенностью кривых надоя и жирномолочности является то, что в период раздоя коров надой повышается, а содержание жира снижается.

Выводы

Таким образом, у коров-первотёлок айрширской породы молочная продуктивность возрастает с повышением индексов пищевой, двигательной и общей активности. Животные больше времени были заняты такой сложной формой

поведения, как пищевая активность, что положительно сказалось на их продуктивности. Особенно выделяются ультраактивные животные, надой которых по сравнению с инфрапассивными был больше на 27,5%, суммарное количество молочного жира и белка – на 30,2%. Для коров инфрапассивного класса характерна низкая кривая надоя, ультраактивные сверстницы имели высокую одновершинную лактационную кривую. Для предприятий желательны коровы с более активным типом поведения. Для лучшего управления молочным скотом и повышения общей продуктивности могут быть использованы этологические признаки коров.

Литература

- 1. Løvendahl, P. An investigation into genetic and phenotypic variation in time budgets and yield of dairy cows [Text] / P. Løvendahl, L. Munksgaard // Journal of Dairy Science. 2016. V. 99. Issue 1. P. 408–417. https://doi.org/10.3168/jds.2015-9838.
- 2. Зубкова, Л.И. К вопросу отбора коров по технологическим признакам вымени [Текст] / Л.И. Зубкова, Е.И. Власова // Вестник АПК Верхневолжья. -2019. -№ 4. C. 52–57.
- 3. Кудрин, А.Г. Этологическая индивидуальность как признак селекции айрширского скота [Текст] / А.Г. Кудрин, Т.В. Седунова, И.В. Бритвина // Молочнохозяйственный вестник. 2016. № 1. С. 28–34.

- 4. Великжанин, В.И. Методические рекомендации по использованию этологических признаков в селекции молочного скота [Текст] / В.И. Великжанин. СПб.: ВНИИ ГРСХЖ, 2000. 19 с.
- 5. Филинская, О.В. Оценка поведенческих реакций и молочной продуктивности коров-первотелок [Текст] / О.В. Филинская // Инновационное развитие племенного животноводства и кормопроизводства в РФ: сб. IX Всеросс. науч.-практ. конф.; под общ. ред. Н.П. Сударева. Тверь, 2018. С. 55–57.
- 6. Sharma, A. The Welfare of Cows in Indian Shelters [Text] / A. Sharma, U. Kennedy, C. Schuetze, C.J.C. Phillips // Animals. 2019. 9 (4). 172. https://doi.org/10.3390/ani9040172.
- 7. Кудрин, М.Р. Исследование поведенческих реакций ремонтных телок черно-пестрой породы [Электронный ресурс] // Успехи современного естествознания. 2008. № 12. С. 32–33.
- 8. Cassida, K.A. Eating and Resting Salivation in Early Lactation Dairy [Text] / K.A. Cassida, M.R. Stokes // Journal of Dairy Science. 1986. V. 69. Issue 5. P. 1282–1292. https://doi.org/10.3168/jds.S0022-0302(86)80534-3.
- 9. Maekawa, M. Chewing Activity, Saliva Production, and Ruminal pH of Primiparous and Multiparous Lactating Dairy Cows [Text] / M. Maekawa, K.A. Beauchemin, D.A. Christensen // Journal of Dairy Science. 2002. V. 85. I. 5 P. 1176–1182. https://doi.org/10.3168/jds.S0022-0302(02)74180-5.
- 10. Shakya, A. Significance of feeding and milking behaviour on dairy cattle management [Text] / A. Shakya, B. Roy, J.S. Yadav, K. Govil // Global Journal of Bio-science and Biotechnology. 2016. V. 5 (3). P. 392–398.
- 11. Филинская, О.В. Характеристика показателей лактации коров ярославской породы [Текст] / О.В. Филинская, О.В. Ивачкина // Вестник АПК Верхневолжья. 2017. № 4. С. 12–17.

References

- 1. Løvendahl, P. An investigation into genetic and phenotypic variation in time budgets and yield of dairy cows [Text] / P. Løvendahl, L. Munksgaard // Journal of Dairy Science. 2016. V. 99. Issue 1. P. 408–417. https://doi.org/10.3168/jds.2015-9838.
- 2. Zubkova, L.I. K voprosu otbora korov po tehnologicheskim priznakam vymeni [Tekst] / L.I. Zubkova, E.I. Vlasova // Vestnik APK Verhnevolzh'ja. 2019. № 4. S. 52–57.
- 3. Kudrin, A.G. Jetologicheskaja individual'nost' kak priznak selekcii ajrshirskogo skota [Tekst] / A.G. Kudrin, T.V. Sedunova, I.V. Britvina // Molochnohozjajstvennyj vestnik. 2016. № 1. S. 28–34.
- 4. Velikzhanin, V.I. Metodicheskie rekomendacii po ispol'zovaniju jetologicheskih priznakov v selekcii molochnogo skota [Tekst] / V.I. Velikzhanin. SPb.: VNII GRSHZh, 2000. 19 s.
- 5. Filinskaya, O.V. Ocenka povedencheskih reakcij i molochnoj produktivnosti korov-pervotelok [Tekst] / O.V. Filinskaya // Innovacionnoe razvitie plemennogo zhivotnovodstva i kormoproizvodstva v RF: sb. IX Vseross. nauch.-prakt. konf.; pod obshh. red. N.P. Sudareva. Tver', 2018. S. 55–57.
- 6. Sharma, A. The Welfare of Cows in Indian Shelters [Text] / A. Sharma, U. Kennedy, C. Schuetze, C.J.C. Phillips // Animals. 2019. 9 (4). 172. https://doi.org/10.3390/ani9040172.
- 7. Kudrin, M.R. Issledovanie povedencheskih reakcij remontnyh telok cherno-pestroj porody [Jelektronnyj resurs] // Uspehi sovremennogo estestvoznanija. 2008. № 12. S. 32–33.
- 8. Cassida, K.A. Eating and Resting Salivation in Early Lactation Dairy [Text] / K.A. Cassida, M.R. Stokes // Journal of Dairy Science. 1986. V. 69. Issue 5. P. 1282–1292. https://doi.org/10.3168/jds.S0022-0302(86)80534-3.
- 9. Maekawa, M. Chewing Activity, Saliva Production, and Ruminal pH of Primiparous and Multiparous Lactating Dairy Cows [Text] / M. Maekawa, K.A. Beauchemin, D.A. Christensen // Journal of Dairy Science. 2002. V. 85. I. 5 P. 1176–1182. https://doi.org/10.3168/jds.S0022-0302(02)74180-5.
- 10. Shakya, A. Significance of feeding and milking behaviour on dairy cattle management [Text] / A. Shakya, B. Roy, J.S. Yadav, K. Govil // Global Journal of Bio-science and Biotechnology. 2016. V. 5 (3). P. 392–398.
- 11. Filinskaya, O.V. Harakteristika pokazatelej laktacii korov jaroslavskoj porody [Tekst] / O.V. Filinskaya, O.V. Ivachkina // Vestnik APK Verhnevolzh'ja. 2017. № 4. S. 12–17.

